Proteomic analysis of Lyme disease: global protein comparison of three strains of Borrelia burgdorferi

Proteomics. 2005 Apr;5(5):1446-53. doi: 10.1002/pmic.200401052.

Abstract

The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. It has been studied extensively to help understand its pathogenicity of infection and how it can persist in different mammalian hosts. We report the proteomic analysis of the archetype B. burgdorferi B31 strain and two other strains (ND40, and JD-1) having different Borrelia pathotypes using strong cation exchange fractionation of proteolytic peptides followed by high-resolution, reversed phase capillary liquid chromatography coupled with ion trap tandem mass spectrometric analysis. Protein identification was facilitated by the availability of the complete B31 genome sequence. A total of 665 Borrelia proteins were identified representing approximately 38% coverage of the theoretical B31 proteome. A significant overlap was observed between the identified proteins in direct comparisons between any two strains (>72%), but distinct differences were observed among identified hypothetical and outer membrane proteins of the three strains. Such a concurrent proteomic overview of three Borrelia strains based upon only the B31 genome sequence is shown to provide significant insights into the presence or absence of specific proteins and a broad overall comparison among strains.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bacterial Proteins* / analysis
  • Bacterial Proteins* / genetics
  • Borrelia burgdorferi* / chemistry
  • Borrelia burgdorferi* / genetics
  • Lyme Disease*
  • Proteome / analysis*

Substances

  • Bacterial Proteins
  • Proteome