Synthesis of methyl carbamates from primary aliphatic amines and dimethyl carbonate in supercritical CO2: effects of pressure and cosolvents and chemoselectivity

J Org Chem. 2005 Apr 1;70(7):2771-7. doi: 10.1021/jo0477796.

Abstract

[reaction: see text] At 130 degrees C, in the presence of CO2 (5-200 bar), primary aliphatic amines react with dimethyl carbonate (MeOCO2Me, DMC) to yield methyl carbamates (RNHCO2Me) and N-methylation side-products (RNHMe and RNMe2). The pressure of CO2 largely influences both the reaction conversion and the selectivity toward urethanes: in general, conversion goes through a maximum (70-80%) in the midrange (40 bar) and drops at lower and higher pressures, whereas selectivity is continuously improved (from 50% up to 90%) by an increase of the pressure. This is explained by the multiple role of CO2 in (i) the acid/base equilibrium with aliphatic amines, (ii) the reactivity/solubility of RNHCO2- nucleophiles with/in DMC, and (iii) the inhibition of competitive N-methylation reaction of the substrates. Cosolvents also affect the reaction: in particular, a drop in selectivity is observed with polar protic media (i.e., MeOH), plausibly because of solvation effects (through H-bonds) of RNHCO2- moieties. The reaction shows also a good chemoselectivity: bifunctional aliphatic amines bearing either aromatic NH2 or OH substituents [XC6H4(CH2)n NH2, X = NH2, OH; n = 1, 2], undergo methoxycarbonylation reactions exclusively at aliphatic amino groups and give the corresponding methyl carbamates [XC6H4(CH2)n NHCO2Me] in 39-65% isolated yields.