Alkoxo-bridged copperII complexes as nodes in designing solid-state architectures. The interplay of coordinative and d10-d10 metal-metal interactions in sustaining supramolecular solid-state architectures

Dalton Trans. 2005 Apr 7:(7):1195-202. doi: 10.1039/b500231a. Epub 2005 Mar 1.

Abstract

Four novel polymeric coordination networks have been obtained through self-assembly processes involving alkoxo-bridged copperII species as nodes, and anionic cyano-complexes as linkers: infinity2[{Cu2(pa)2}{M(CN)2}2](M=Ag, 1; Au, 2), (infinity)3[{Cu4(mea)4}{Au(CN)2}4.H2O]3, and (infinity)3[{Cu2(pa)2}{Ni(CN)4}](pa = deprotonated propanolamine; mea = deprotonated monoethanolamine). The supramolecular architectures of compounds 1, and 2 are sustained by argentophilic or strong aurophilic interactions. The solid-state architectures of 1 and 2, which are isomorphous, consist of infinite layers, constructed from binuclear alkoxo-bridged nodes and [M(CN)2]- spacers. The layers are stacked in an offset parallel mode, and are further interconnected through Ag...Ag or Au...Au contacts (1: Ag...Ag 3.015 A; 2: Au....Au 3.069 A). Compound 3 consists of unique fourfold interpenetrating diamondoid nets. The diamondoid topology is built of heterocubane {Cu4O4} nodes, which are connected by [Au(CN)2]- rods. The Cu-O distances within the {Cu4O4} node vary between 1.927(2) and 2.679(1) A, showing unsymmetric bridging of the copper atoms. Aurophilic interactions are established between the bridging and terminal [Au(CN)2]- metalloligands, and connect the interpenetrating nets, resulting in infinite chains of gold atoms (the Au...Au distances vary between 3.253 and 3.305 [Angstrom]). Compound 4 exhibits a 3-D network constructed from {Cu2(pa)2]2+ nodes connected by square-planar [Ni(CN)4]2- ions. Compounds 1, 2 and 4 are weakly paramagnetic. The cryomagnetic investigation of reveals a gradual increase, followed by a decrease of the chiMT product, as the temperature is lowered. A superposition of ferro- (J1=+20.8 cm(-1)) and antiferromagnetic (J2=-6.4) interactions within the tetranuclear node was found. Antiferromagnetic interactions are established between the tetranuclear nodes (theta=-2.99 K).