Prostacyclin prevents nitric oxide-induced megakaryocyte apoptosis

Br J Pharmacol. 2005 Jun;145(3):283-92. doi: 10.1038/sj.bjp.0706200.

Abstract

1 We have previously demonstrated that nitric oxide (NO) triggers CD34(+)-derived megakaryocyte apoptosis. We here show that prostacyclin (PGI(2)) inhibits PAPA/NO-induced megakaryocyte death detected by fluorescent microscopy and flow cytometry. 2 The cAMP-specific phosphodiesterase inhibitor, Ro 20-1724, and the permeable analog dibutyryl-cAMP also delayed apoptosis. PGI(2) effect was fully prevented when adenylyl cyclase activity was suppressed by SQ 22536, and partially reversed by the permeable protein kinase A inhibitor PKI 14-22 amide. ELISA showed that while both PGI(2) and NO alone or synergistically raised cAMP, only NO was able to increase intracellular cGMP levels. 3 Treatment of megakaryocytes with PGI(2) abolished both basal and NO-raised cGMP levels. Addition of 8-pCPT-cGMP or activation of soluble guanylyl cyclase by BAY 41-2272 induced cell death in a concentration-dependent manner, and ODQ, an inhibitor of guanylyl cyclase, prevented both PAPA/NO- or BAY 41-2272-induced apoptosis. Specific cGMP phosphodiesterase inhibition by Zaprinast or suppression of adenylyl cyclase by SQ 22536 enhanced the PAPA/NO proapoptotic effect. 4 PGI(2) completely inhibited NO-mediated generation and the increased activity of the cleaved form of caspase-3. 5 In conclusion, our results demonstrate that contrary to their well-known direct and synergistic inhibitory effects on platelets, PGI(2) and NO regulate opposite megakaryocyte survival responses through a delicate balance between intracellular cyclic nucleotide levels and caspase-3 activity control.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects*
  • Apoptosis / physiology
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / metabolism
  • Epoprostenol / pharmacology*
  • Humans
  • Megakaryocytes / drug effects*
  • Megakaryocytes / metabolism
  • Nitric Oxide / antagonists & inhibitors*
  • Nitric Oxide / pharmacology*

Substances

  • Nitric Oxide
  • Epoprostenol