Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET)

J Am Chem Soc. 2005 Mar 23;127(11):3825-30. doi: 10.1021/ja0429364.

Abstract

A new initiating/catalytic system for atom transfer radical polymerization (ATRP) is reported. This system starts with alkyl halides as initiators and transition metal complexes in their oxidatively stable state (e.g., Cu(II)Br2/ligand) as catalysts. The activators are generated by electron transfer (AGET) without involvement of initiating organic radicals. AGET ATRP has a significant advantage over simultaneous reverse and normal initiation (SR&NI) ATRP, because it provides a simple route for synthesizing pure polymers with complex architectures such as star copolymers, block copolymers, etc. Furthermore, AGET ATRP can be also successfully carried out in miniemulsion. Homopolymers and pure block copolymers were successfully synthesized via ATRP in miniemulsion using AGET ATRP. The final products were analyzed via two-dimensional chromatography, which combines high performance liquid chromatography (HPLC) and gel permeation chromatography (GPC). The resulting chromatograms showed that pure linear block copolymers and star block copolymers were prepared without the presence of any homopolymers.