Cortical cell assemblies: a possible mechanism for motor programs

J Mot Behav. 1994 Jun;26(2):66-82. doi: 10.1080/00222895.1994.9941663.

Abstract

The concept of a motor program has been used to interpret a diverse range of empirical findings related to preparation and initiation of voluntary movement. In the absence of an underlying mechanism, its exploratory power has been limited to that of an analogy with running a stored computer program. We argue that the theory of cortical cell assemblies suggests a possible neural mechanism for motor programming. According to this view, a motor program may be conceptualized as a cell assembly, which is stored in the form of strengthened synaptic connections between cortical pyramidal neurons. These connections determine which combinations of corticospinal neurons are activated when the cell assembly is ignited. The dynamics of cell assembly ignition are considered in relation to the problem of serial order. These considerations lead to a plausible neural mechanism for the programming of movements and movement sequences that is compatible with the effects of precue information and sequence length on reaction times. Anatomical and physiological guidelines for future quantitative models of cortical cell assemblies are suggested. By taking into account the parallel re-entrant loops between the cerebral cortex and basal ganglia, the theory of cortical cell assemblies suggests a mechanism for motor plans that involve longer sequences. The suggested model is compared with other existing neural network models for motor programming.