Metabolism of dehydroepiandrosterone by rodent brain cell lines: relationship between 7-hydroxylation and aromatization

J Steroid Biochem Mol Biol. 2005 Jan;93(1):81-6. doi: 10.1016/j.jsbmb.2004.11.008.

Abstract

The rate of aromatization of 4-androstenedione (AD) and 7-hydroxylation of dehydroepiandrosterone (DHEA) by different neuronal cell lines from fetal rat and mouse brain was compared to that of embryonic rat hippocampal cells in primary culture. The (3)H-labeled steroids were incubated with the cells and the metabolites extracted and separated by thin layer chromatography (TLC), as well as analyzed by high-performance liquid chromatography (HPLC) for further identification. All cell types produced estrone (E(1)) and estradiol (E(2)) from [(3)H]AD but the rate of aromatization was lowest with the rat hippocampal cells in primary culture. With [(3)H]DHEA, BHc.2 mouse hippocampal cells and E(t)C.1 neurons behaved like the mixed cells from rat hippocampus, forming 7-hydroxy DHEA as the almost exclusive product. In contrast, mouse brain BV2 microglia were virtually unable to hydroxylate DHEA at C-7 and yielded estrogen and more testosterone (T) than other cell types tested. These experiments highlight the pivotal role of 3beta-hydroxysteroid dehydrogenase/ketoisomerase in the control of AD formation for its subsequent aromatization to estrogen. It raises the possibility that differences in metabolism of DHEA by certain brain cells could account for differences in their immunomodulatory and neuroprotective functions. Some could exert their effects by converting DHEA to its 7-hydroxylated form while others, like BV2 microglia, by converting DHEA primarily to other C-19 steroids and to estrogen by way of AD.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 17-Hydroxysteroid Dehydrogenases / metabolism
  • Androstenedione / metabolism
  • Animals
  • Aromatase / metabolism*
  • Brain / cytology
  • Brain / embryology
  • Brain / metabolism*
  • Cell Line
  • Chromatography, High Pressure Liquid
  • Chromatography, Thin Layer
  • Clone Cells
  • Dehydroepiandrosterone / metabolism*
  • Estrogens / metabolism
  • Hippocampus / cytology
  • Hippocampus / embryology
  • Hippocampus / metabolism
  • Hydroxylation
  • Mice
  • Microglia / cytology
  • Microglia / metabolism
  • Neurons / cytology
  • Neurons / metabolism
  • Rats
  • Testosterone / metabolism
  • Tritium

Substances

  • Estrogens
  • Tritium
  • Testosterone
  • Androstenedione
  • Dehydroepiandrosterone
  • 17-Hydroxysteroid Dehydrogenases
  • 3 (or 17)-beta-hydroxysteroid dehydrogenase
  • Aromatase