Kinetics of formation and dissociation of lanthanide(III) complexes with the 13-membered macrocyclic ligand TRITA4-

Dalton Trans. 2005 Mar 21:(6):1058-65. doi: 10.1039/b418991d. Epub 2005 Feb 10.

Abstract

The tetraazamacrocyclic ligand TRITA(4-) is intermediate in size between the widely studied and medically used 12-membered DOTA(4-) and the 14-membered TETA(4-). The kinetic inertness of GdTRITA(-) was characterized by the rates of exchange reactions with Zn(2+) and Eu(3+). In the Zn(2+) exchange, a second order [H(+)] dependence was found for the pseudo-first-order rate constant (k(0)=(4.2 +/- 0.5) x 10(-7) s(-1); k'=(3.5 +/- 0.3) x 10(-1) M(-1)s(-1), k" =(1.4 +/- 0.4) x 10(3) M(-2)s(-1)). In the Eu(3+) exchange, at pH <5 the rate decreases with increasing concentration of the exchanging ion, which can be accounted for by the transitional formation of dinuclear GdTRITAEu(2+) species. At physiological pH, the kinetic inertness of GdTRITA(-) is considerably lower than that of GdDOTA(-)(t(1/2)= 444 h (25 degrees C) vs. 3.8 x 10(5) h (37 degrees C), respectively). However, GdTRITA(-) is still kinetically more inert than GdDTPA(2-), the most commonly used MRI contrast agent (t(1/2)= 127 h). The formation reactions of LnTRITA(-) complexes (Ln = Ce, Gd and Yb) proceed via the rapid formation of a diprotonated intermediate and its subsequent deprotonation and rearrangement in a slow, OH(-) catalyzed process. The stability of the LnH(2)TRITA* intermediates (log K(LnH2L*)= 3.1-3.9) is lower than that of the DOTA-analogues. The rate constants of the OH(-) catalyzed step increase with decreasing lanthanide ion size, and are about twice as high as for DOTA-complexes.