Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused c(k) x rays

Radiat Res. 2005 Mar;163(3):332-6. doi: 10.1667/rr3319.

Abstract

Although conclusive evidence has been obtained for the presence of radiation-induced bystander effects, the mechanisms that trigger and regulate these processes are still largely unknown. The bystander effect may play a critical role in determining the biological effectiveness of low-dose exposures, but questions on how to incorporate it into current models and extrapolate the risks of radiation-induced carcinogenesis are still open. The Gray Cancer Institute soft X-ray microbeam has been used to investigate the dose-response relationship of the bystander effect below 0.5 Gy. The survival response of V79 cells was assessed after the irradiation of a single cell within a population with a submicrometer-size beam of carbon K X rays (278 eV). Above 0.3 Gy, the measured bystander cell killing was in agreement with previously published data; however, a significant increase in the scatter of the data was observed in the low-dose region (<0.3 Gy). The data distribution observed indicates a binary behavior for triggering of the bystander response. According to our hypothesis, the probability of triggering a bystander response increases approximately linearly with the dose delivered to the single selected cell, reaching 100% above about 0.3 Gy. The magnitude of the bystander effect, when triggered, is approximately constant with the dose and results in an overall approximately 10% reduction in survival in our system. This suggests that the event that triggers the emission of the bystander signal by the hit cell is an all-or-nothing process. Extrapolation of the data indicates that when a single fast electron traverses a V79 cell, there is a probability of approximately 0.3% that the cell will emit the bystander signal. The data presented in this paper have also been analyzed statistically to test the possibility that complex DNA double-strand breaks may be the initial critical event.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bystander Effect*
  • Cell Culture Techniques
  • Cell Line
  • Cell Survival
  • Cricetinae
  • DNA Damage
  • Dose-Response Relationship, Radiation
  • Electrons
  • Linear Energy Transfer / physiology*
  • Radiation Dosage
  • X-Rays*