The kinetics of conformational fluctuations in an unfolded protein measured by fluorescence methods

Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2385-9. doi: 10.1073/pnas.0500127102. Epub 2005 Feb 8.

Abstract

The simplest dynamic model for an unfolded protein is a statistical coil that continually undergoes substantial conformational fluctuations. A growing number of studies indicate that the unfolded protein is not a simple random coil but rather forms transient structures. We have directly measured the rate of conformational fluctuations of unfolded intestinal fatty acid binding protein (131 aa, 15 kDa) by using fluorescence self-quenching in combination with fluorescence correlation spectroscopy. The conformational fluctuations in this state have an apparent relaxation time, tauR, of 1.6 microsec in 3 M guanidine-HCl at pH 7 and 20 degrees C. The value of tauR increases with increasing solution viscosity, suggesting a diffusive process. In the molten globule state at pH 2, tauR is 2.5 microsec, increasing further with the formation of salt-induced secondary structure. These measurements, which should be widely applicable to other systems, can provide important information about the still incompletely understood conformational properties of unfolded proteins and the mechanism of protein folding.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Biophysical Phenomena
  • Biophysics
  • Carrier Proteins / chemistry*
  • Carrier Proteins / genetics
  • Circular Dichroism
  • Fatty Acid-Binding Proteins
  • In Vitro Techniques
  • Mutagenesis, Site-Directed
  • Protein Conformation
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Spectrometry, Fluorescence / instrumentation
  • Spectrometry, Fluorescence / methods*
  • Viscosity

Substances

  • Carrier Proteins
  • Fatty Acid-Binding Proteins
  • Recombinant Proteins