Methionine sulfoxide reductases in prokaryotes

Biochim Biophys Acta. 2005 Jan 17;1703(2):221-9. doi: 10.1016/j.bbapap.2004.08.017.

Abstract

In living organisms, most methionine residues exposed to reactive oxygen species (ROS) are converted to methionine sulfoxides. This reaction can lead to structural modifications and/or inactivation of proteins. Recent years have brought a wealth of new information on methionine sulfoxide reductase A (MsrA) and B (MsrB) which makes methionine oxidation a reversible process. Homologs of msrA and msrB genes have been identified in most living organisms and their evolution throughout different species led to different genetic organization and different copy number per organism. While MsrA and MsrB had been the focus of multiple biochemical investigations, our understanding of their physiological role in vivo remains scarce. Yet, the recent identification of a direct link between protein targeting and MsrA/MsrB repair offers a best illustration of the physiological importance of this pathway. Repeatedly identified as a potential "virulence factor", contribution of msrA to pathogenicity is also discussed. It remains, however, unclear whether reduced virulence results from overall viability loss or relates to specific oxidized virulence factors left unrepaired. We speculate that a major issue towards assessing the in vivo role of the MsrA/MsrB repair pathway in the next future will be to decipher the interrelations, if any, between MsrA/MsrB-mediated repair and chaperone-assisted folding and/or protease-assisted degradation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Escherichia coli / enzymology*
  • Escherichia coli / genetics
  • Escherichia coli / pathogenicity
  • Gene Expression Regulation, Bacterial
  • Methionine Sulfoxide Reductases
  • Oxidoreductases / genetics
  • Oxidoreductases / metabolism*
  • Virulence / genetics

Substances

  • Oxidoreductases
  • Methionine Sulfoxide Reductases
  • methionine sulfoxide reductase