Regulation of the estrogen-inducible gene expression profile by the breast cancer susceptibility gene BRCA1

Endocrinology. 2005 Apr;146(4):2031-47. doi: 10.1210/en.2004-0409. Epub 2005 Jan 6.

Abstract

The tumor suppressor gene BRCA1 functions in part as a caretaker in preserving the integrity of the genome, but also exhibits tissue-specific function by inhibiting estrogen receptor activity. Because estrogen (E2) induces a wide range of gene expression changes (by nongenomic and several transcriptional pathways), we sought to determine how comprehensive is the BRCA1-mediated inhibition of E2-induced gene expression alterations. Using cDNA-spotted microarrays, we identified a relatively large number of gene expression alterations (both increased and decreased expression) in MCF-7 cells caused by E2, some of which have been reported in previous studies. However, in the presence of exogenous wild-type BRCA1 (wtBRCA1), the response to E2 was severely blunted, with only about 10% the number of gene expression changes as that found in the absence of wtBRCA1. Examples of these findings were confirmed by semiquantitative and quantitative RT-PCR assays. In contrast to wtBRCA1, the induction by E2 of several E2-responsive genes was not inhibited by a full-length tumor-associated mutant BRCA1 protein [T300G (or (61)Cys-->Gly)]. For three E2-responsive genes whose induction by E2 was inhibited by wtBRCA1, wtBRCA1 had little or no effect on the mRNA half-life in the presence of E2. Consistent with these findings, wtBRCA1 inhibited E2-stimulated proliferation of MCF-7 cells, but wtBRCA1 failed to inhibit the proliferation of MCF-7 cells stimulated by IGF-I. Our findings suggest that BRCA1 globally inhibits the response to estrogen in a dose- and time-dependent fashion. The implications of these findings for understanding how BRCA1 may act to restrain E2 action in vivo are considered.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Line, Tumor
  • Cell Proliferation
  • Estradiol / pharmacology*
  • Estrogens / pharmacology*
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Genes, BRCA1 / physiology*
  • Humans
  • Oligonucleotide Array Sequence Analysis
  • RNA, Messenger / metabolism

Substances

  • Estrogens
  • RNA, Messenger
  • Estradiol