Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway

J Biol Chem. 2005 Mar 25;280(12):10964-73. doi: 10.1074/jbc.M407874200. Epub 2005 Jan 4.

Abstract

The macrolide antibiotic rapamycin inhibits the mammalian target of rapamycin protein (mTOR) kinase resulting in the global inhibition of cap-dependent protein synthesis, a blockade in ribosome component biosynthesis, and G1 cell cycle arrest. G1 arrest may occur by inhibiting the protein synthesis of critical factors required for cell cycle progression. Hypersensitivity to mTOR inhibitors has been demonstrated in cells having elevated levels of AKT kinase activity, whereas cells containing quiescent AKT activity are relatively resistant. Our previous data suggest that low AKT activity induces resistance by allowing continued cap-independent protein synthesis of cyclin D1 and c-Myc proteins. In support of this notion, the current study demonstrates that the human cyclin D1 mRNA 5' untranslated region contains an internal ribosome entry site (IRES) and that both this IRES and the c-myc IRES are negatively regulated by AKT activity. Furthermore, we show that cyclin D1 and c-myc IRES function is enhanced following exposure to rapamycin and requires both p38 MAPK and RAF/MEK/ERK signaling, as specific inhibitors of these pathways reduce IRES-mediated translation and protein levels under conditions of quiescent AKT activity. Thus, continued IRES-mediated translation initiation may permit cell cycle progression upon mTOR inactivation in cells in which AKT kinase activity is relatively low.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 5' Untranslated Regions / chemistry
  • Cell Cycle Proteins / genetics
  • Cell Line
  • Cyclin D1 / genetics*
  • Cyclin-Dependent Kinase Inhibitor p27
  • Extracellular Signal-Regulated MAP Kinases / physiology*
  • Genes, myc*
  • Humans
  • PTEN Phosphohydrolase
  • Phosphoric Monoester Hydrolases / physiology
  • Protein Biosynthesis*
  • Protein Kinases / physiology
  • Protein Serine-Threonine Kinases / physiology*
  • Proto-Oncogene Proteins / physiology*
  • Proto-Oncogene Proteins c-akt
  • Ribosomes / physiology*
  • Signal Transduction
  • Sirolimus / pharmacology*
  • TOR Serine-Threonine Kinases
  • Tumor Suppressor Proteins / genetics
  • Tumor Suppressor Proteins / physiology
  • p38 Mitogen-Activated Protein Kinases / physiology*

Substances

  • 5' Untranslated Regions
  • Cell Cycle Proteins
  • Proto-Oncogene Proteins
  • Tumor Suppressor Proteins
  • Cyclin D1
  • Cyclin-Dependent Kinase Inhibitor p27
  • Protein Kinases
  • MTOR protein, human
  • AKT1 protein, human
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • Extracellular Signal-Regulated MAP Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Phosphoric Monoester Hydrolases
  • PTEN Phosphohydrolase
  • PTEN protein, human
  • Sirolimus