Cellular uptake and photocytotoxicity of glycoconjugated chlorins in HeLa cells

J Photochem Photobiol B. 2005 Jan 14;78(1):7-15. doi: 10.1016/j.jphotobiol.2004.09.003.

Abstract

Eight 5,10,15,20-tetrakis[3- or 4-(beta-D-glycopyranosyloxy)phenyl]chlorins were synthesized by means of the Whitlock method with diimide reduction and purified by reversed-phase thin layer chromatography (RP-TLC). All compounds were characterized by (1)H NMR spectroscopy, electron-spray ionization time-of-flight mass spectrometry (ESI-TOF MS), and UV-Vis spectroscopy. ESI-TOF MS could detect the 2H difference in molecular weight between a glycoconjugated chlorin and its corresponding porphyrin (i.e., 5,10,15,20-tetrakis[3- or 4-(beta-D-glycopyranosyloxy)phenyl]porphyrin). The cellular uptake of the eight chlorins was evaluated in HeLa cells. All glycoconjugated chlorins showed higher cellular uptake than tetraphenylporphyrin tetrasulfonic acid (TPPS), and 5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin showed 50-fold higher uptake than TPPS. The photocytotoxicity of 5,10,15,20-tetrakis[3-(beta-D-glucopyranosyloxy)phenyl]chlorin, 5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin and TPPS towards HeLa cells was examined at the concentration of 2x10(-7) M (mol/dm(3)). These photosensitizers had no cytotoxicity in the dark, but their photocytotoxicity decreased in the order of 5,10,15,20-tetrakis[3-(beta-D-glucopyranosyloxy)phenyl]chlorin>5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin>TPPS. The results indicate that the photocytotoxicity is not related simply to cellular uptake.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Transport
  • Glycosylation
  • HeLa Cells
  • Humans
  • Molecular Structure
  • Photochemistry
  • Porphyrins / chemical synthesis
  • Porphyrins / chemistry
  • Porphyrins / metabolism*
  • Porphyrins / toxicity*
  • Spectrum Analysis

Substances

  • Porphyrins
  • chlorin