Framework control by a metalloligand having multicoordination ability: new synthetic approach for crystal structures and magnetic properties

Inorg Chem. 2005 Jan 10;44(1):133-46. doi: 10.1021/ic049550e.

Abstract

By utilizing the novel metalloligand l(Cu), [Cu(2,4-pydca)(2)](2)(-) (2,4-pydca(2)(-) = pyridine-2,4-dicarboxylate), which possesses two kinds of coordination groups, selective bond formation with the series of the first-period transition metal ions (Mn(ii), Fe(ii), Co(ii), Cu(ii), and Zn(ii)) has been accomplished. depending on the coordination mode of 4-carboxylate with Co(ii), Cu(ii), and Zn(ii) ions, L(Cu) forms a one-dimensional (1-d) assembly with a repeating motif of [-M-O(2)C-(py)N-Cu-N(py)-Co(2)-]: {[ZnL(Cu)(H(2)O)(3)(DMF)].DMF}(N)() (2), [ZnL(Cu)(H(2)O)(2)(MeOH)(2)](N)() (3), and {[ML(Cu)(H(2)O)(4)].2H(2)O}(N)() (M = Co (4), Cu (5), Zn (6)). the use of a terminal ligand of 2,2'-bipyridine (2,2'-bpy), in addition to the cu(ii) ion, gives a zigzag 1-d assembly with the similar repeating unit as 4-6: {[Cu(2,2'-bpy)L(Cu)].3H(2)O}(N)() (9). on the other hand, for Mn(ii) and Fe(ii) ions, L(Cu) shows a 2-carboxylate bridging mode to form an another 1-d assembly with a repeating motif of [-M-O-C-O-CU-O-C-O-]: [ML(Cu)(H(2)O)(4)](N)() (M = Mn (7), Fe (8)). this selectivity is related to the strength of lewis basicity and the electrostatic effect of L(Cu) and the irving-williams order on the present metal ions. according to their bridging modes, a variety of magnetic properties are obtained: 4, 5, and 9, which have the 4-carboxypyridinate bridge between magnetic centers, have weak antiferromagnetic interaction, whereas 7 and 8 with the carboxylate bridge between magnetic centers reveal 1-d ferromagnetic behavior (Cu(II)-M(II); M(II) = Mn(II), J/k(B) = 0.69 K for 7; M(II) = Fe(II), J/k(B) = 0.71 K for 8).