Combinatorial biosynthesis of antitumor indolocarbazole compounds

Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):461-6. doi: 10.1073/pnas.0407809102. Epub 2004 Dec 29.

Abstract

Rebeccamycin and staurosporine are natural products with antitumor properties, which belong to the family of indolocarbazole alkaloids. An intense effort currently exists for the generation of indolocarbazole derivatives for the treatment of several diseases, including cancer and neurodegenerative disorders. Here, we report a biological process based on combinatorial biosynthesis for the production of indolocarbazole compounds (or their precursors) in engineered microorganisms as a complementary approach to chemical synthesis. We have dissected and reconstituted the entire biosynthetic pathway for rebeccamycin in a convenient actinomycete host, Streptomyces albus. This task was achieved by coexpressing different combinations of genes isolated from the rebeccamycin-producing microorganism. Also, a gene (staC) was identified in staurosporine-producing microbes and was shown to have a key role to differentiate the biosynthetic pathways for the two indolocarbazoles. Last, incorporation of the pyrH and thal genes, encoding halogenases from different microorganisms, resulted in production of derivatives with chlorine atoms at novel positions. We produced >30 different compounds by using the recombinant strains generated in this work.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antineoplastic Agents / metabolism*
  • Carbazoles / metabolism*
  • Combinatorial Chemistry Techniques*
  • Indoles / metabolism*
  • Staurosporine / biosynthesis*
  • Streptomyces / metabolism*

Substances

  • Antineoplastic Agents
  • Carbazoles
  • Indoles
  • rebeccamycin
  • Staurosporine