Ellipsometry studies of nonionic surfactant adsorption at the oil--water interface

Langmuir. 2005 Jan 4;21(1):149-59. doi: 10.1021/la049848h.

Abstract

In the presented study we have developed and implemented a methodology for ellipsometry measurements at liquid interfaces that makes it possible to determine the amount adsorbed without assumptions of refractive index or thickness of the adsorbed layer. It was demonstrated that this is possible by combined measurements from different aqueous phases, H(2)O and D(2)O, which were shown to have sufficiently different refractive indices. The methodology was tested by studying adsorption of two types of nonionic poly(ethylene glycol) alkyl ether surfactants, C(n)H(2)(n)(+1)(OC(2)H(4))(m)OH or C(n)E(m) at the decane--aqueous interface, where C(12)E(5) was adsorbed from the oil phase and C(18)E(50) from the aqueous phase. The observed plateau values of the adsorbed amounts were 1.38 and 0.93 mg/m(2) for C(12)E(5) and C(18)E(50), respectively, which is in agreement with the corresponding values of 1.49 and 1.15 mg/m(2) obtained from applying the Gibbs equation to interfacial tension data for the same systems. We will briefly discuss the adsorption behavior in relation to the molecular structure of the surfactant and the phase behavior of the oil--surfactant--aqueous systems in relation to our experimental results.