The direct and indirect effects of insectivory by birds in two contrasting Neotropical forests

Oecologia. 2005 Mar;143(1):106-16. doi: 10.1007/s00442-004-1774-1. Epub 2004 Dec 7.

Abstract

A goal among community ecologists is to predict when and where trophic cascades occur. For example, several studies have shown that forest birds can limit arthropod abundances on trees, but indirect effects of bird predation (i.e. decreased arthropod damage to trees) are not always observed and their context is not well understood. Because productivity is one factor that is expected to influence trophic cascades, we compared the extent to which birds indirectly limit herbivore damage to trees in two lowland Neotropical forests that differed in seasonality of leaf production and rainfall. We compared the effects of bird predation on local arthropod densities and on damage to foliage through a controlled experiment using bird exclosures in the canopy and understory of two forests. We found that birds decreased local arthropod densities and leaf damage in the canopy of the drier site during periods of high leaf production, but not in the wetter forest where leaf production was low and sporadic throughout the year. Birds had no effect on arthropod abundances and leaf damage in the understory where leaf production and turnover rates were low. In support of these experimental interpretations, although we observed that arthropod densities were similar at the two sites, bird densities and the rate at which birds captured arthropods were greater at the drier, seasonally productive site. The influence of top-down predation by birds in limiting herbivorous insects appears to be conditional and most important when the production and turnover of leaves are comparatively high.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Birds / physiology*
  • Ecology
  • Food Chain*
  • Insecta / physiology*
  • Panama
  • Plant Leaves / growth & development
  • Population Density
  • Predatory Behavior*
  • Rain
  • Seasons
  • Trees / growth & development*
  • Tropical Climate