Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems

Lab Chip. 2004 Dec;4(6):614-8. doi: 10.1039/b409366f. Epub 2004 Nov 11.

Abstract

A one-step immunomagnetic separation technique was performed on a microfluidic platform for the isolation of specific cells from blood samples. The cell isolation and purification studies targeted T cells, as a model for low abundance cells (about 1:10,000 cells), with more dilute cells as the ultimate goal. T cells were successfully separated on-chip from human blood and from reconstituted blood samples. Quantitative polymerase chain reaction analysis of the captured cells was used to characterize the efficiency of T cell capture in a variety of flow path designs. Employing many (4-8), 50 microm deep narrow channels, with the same overall cross section as a single, 3 mm wide channel, was much more effective in structuring dense enough magnetic bead beds to trap cells in a flowing stream. The use of 8-multiple bifurcated flow paths increased capture efficiencies from approximately 20 up to 37%, when compared to a straight 8-way split design, indicating the value of ensuring uniform flow distribution into each channel in a flow manifold for effective cell capture. Sample flow rates of up to 3 microL min(-1) were evaluated in these capture beds.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blood Cell Count / instrumentation*
  • Blood Cell Count / methods
  • Cell Separation / instrumentation*
  • Cell Separation / methods
  • Equipment Design
  • Equipment Failure Analysis
  • Humans
  • Immunomagnetic Separation / instrumentation*
  • Immunomagnetic Separation / methods
  • Jurkat Cells
  • Leukemia, T-Cell / pathology*
  • Microfluidic Analytical Techniques / instrumentation*
  • Microfluidic Analytical Techniques / methods
  • Reproducibility of Results
  • Sensitivity and Specificity