A family of manganese rods: syntheses, structures, and magnetic properties

J Am Chem Soc. 2004 Dec 1;126(47):15445-57. doi: 10.1021/ja0471929.

Abstract

The reaction of the mixed-valent metal triangles [Mn(3)O(O(2)CR)(6)(py)(3)] (R = CH(3), Ph, C(CH(3))(3)) with the tripodal ligands H(3)thme (1,1,1-tris(hydroxymethyl)ethane) and H(3)tmp (1,1,1-tris(hydroxymethyl)propane) in MeCN, produces a family of manganese rodlike complexes whose structures are all derived from a series of edge-sharing triangles. Variable temperature direct current (dc) magnetic susceptibility data were collected for all complexes in the 1.8-300 K temperature range in fields up to 7.0 T. Complex 1, [Mn(12)O(4)(OH)(2)(PhCOO)(12)(thme)(4)(py)(2)], has an S = 7 ground state with the parameters g = 1.98 and D = -0.13 K. Complex 2, [Mn(8)O(4)((CH(3))(3)CCO(2))(10)(thme)(2)(py)(2)] has a ground state of S = 6, with g = 1.81 and D = -0.36 K. Complex 3, [Mn(7)O(2)(PhCO(2))(9)(thme)(2)(py)(3)], has a spin ground states of S = 7 with the parameters g = 1.78 and D = -0.20 K. The best fit for complex 4, [Mn(6)((CH(3))(3)CCO(2))(8)(tmp)(2)(py)(2)], gave a spin ground state of S = 3 with the parameters g = 1.73 and D = -0.75 K, but was of poorer quality than that normally obtained. The presence of multiple Mn(2+) ions in the structure of 4 leads to the presence of low-lying excited states with energy levels very close to the ground state, and in the case of complex 5, [Mn(6)(CH(3)CO(2))(6)(thme)(2)(H(2)tea)(2)], no satisfactory fit of the data was obtained. DFT calculations on 4 and 5 indicate complexes with spin ground states of S = 4 and S = 0 respectively, despite their topological similarities. Single-crystal hysteresis loop and relaxation measurements show complex 1 to be a SMM.