Polysynaptic olfactory pathway to the ipsi- and contralateral entorhinal cortex mediated via the hippocampus

Neuroscience. 2005;130(1):249-58. doi: 10.1016/j.neuroscience.2004.08.042.

Abstract

Interactions between olfactory cortices and the hippocampus support sensory discrimination and spatial learning functions. The olfactory input accesses the hippocampal formation via a polysynaptic pathway mediated by the lateral and rostral entorhinal cortex (EC). We recently demonstrated that following repetitive stimulation of the lateral olfactory tract (LOT) at 2-8 Hz, a delayed response (onset at circa 60 ms) was evoked in the caudal portion of the EC, identified as medial EC, that does not receive a direct olfactory input. By performing simultaneous laminar profile analysis in the EC and in different hippocampal subfields, we conclusively demonstrate that the delayed EC response evoked by repetitive ipsilateral LOT stimulation is headed by the sequential activation of the dentate gyrus and the CA3/CA1 subfields in the septal and temporal hippocampus. Repetitive stimulation of the contralateral LOT also induced an EC response that peaked at 76.28+/-2.42 ms (n=15). Current source density analysis and time-delay analysis of simultaneous field potential laminar profiles performed from the EC and from DG, CA3 and CA1 hippocampal subfields suggested that the contralateral EC response is mainly carried by an intrahippocampal CA3-CA3 commissural pathway. Contralateral LOT stimulation also induced a later EC component (delay >100 ms) generated in the superficial layers, mediated either by local associative interactions or by extrahippocampal circuits. The opportunity to activate the ipsi- and contralateral olfactory pathways in the same experiment and to record field potentials profiles simultaneously in different structures of both hemispheres in the isolated guinea-pig brain confirms that this preparation is unique and is particularly suitable for investigating the system physiology of the limbic region. The present study demonstrates that patterned stimulation of the olfactory input that mimics sniffing patterns during odor discrimination induces a diffuse activation of both ipsi- and contralateral hippocampi and ECs. The findings contribute to the understanding the physiological mechanisms that underlie associative interactions between olfactory and non-olfactory cortical inputs converging into the mesial temporal region.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Electric Stimulation / methods
  • Entorhinal Cortex / anatomy & histology*
  • Entorhinal Cortex / physiology*
  • Evoked Potentials / physiology
  • Evoked Potentials / radiation effects
  • Functional Laterality / physiology*
  • Guinea Pigs
  • Hippocampus / physiology*
  • Hippocampus / radiation effects
  • In Vitro Techniques
  • Neural Networks, Computer
  • Olfactory Pathways / physiology*
  • Olfactory Pathways / radiation effects
  • Synapses / physiology*
  • Synapses / radiation effects