Influence of supplemental cracked high-linoleate or high-oleate safflower seeds on site and extent of digestion in beef cattle

J Anim Sci. 2004 Dec;82(12):3577-88. doi: 10.2527/2004.82123577x.

Abstract

Our objectives were to evaluate ruminal fermentation patterns, apparent ruminal biohydrogenation, and site and extent of nutrient disappearance in cattle fed supplemental cracked safflower seeds differing in 18 C fatty acid profile. Nine Angus x Gelbvieh heifers (641 +/- 9.6 kg) fitted with ruminal and duodenal cannulas were used in a triplicated 3 x 3 Latin square. Cattle were fed (OM basis) 9.1 kg of bromegrass hay and either 1) 1.8 kg of corn and 0.20 kg of soybean meal (Control); 2) 0.13 kg of soybean meal and 1.5 kg of cracked high-linoleate (67.2% 18:2) safflower seeds (Linoleate); or 3) 1.5 kg of cracked high-oleate (72.7% 18:1) safflower seeds (Oleate). Safflower seed supplements were formulated to provide similar quantities of N and TDN and 5% dietary fat. Single degree of freedom orthogonal contrasts (Control vs. Linoleate and Oleate; Linoleate vs. Oleate) were used to evaluate treatment effects. True ruminal OM and ruminal NDF disappearances (percentage of intake) were greater (P < or =0.02) for Control than Linoleate and Oleate. True ruminal N degradability (% of intake) was not different (P = 0.38) among treatments. Apparent ruminal biohydrogenation of dietary 18:2 was greatest (Linoleate vs. Oleate, P < 0.001) for Linoleate, whereas biohydrogenation of dietary 18:1 was greatest (Linoleate vs. Oleate, P = 0.02) for Oleate. Duodenal flow of 18:0 was least (P < 0.001) for Control but did not differ (P = 0.92) between Oleate and Linoleate. Total flow of unsaturated fatty acid to the duodenum was greatest (P < 0.001) in cattle fed safflower seeds, and was greater with Linoleate (P < 0.001) than with Oleate. Duodenal flow of 18:1 and 18:2 increased (P < 0.001) in Oleate and Linoleate, respectively. Duodenal flow of 18:1trans-11 was greater (P < 0.001) in cattle fed safflower seeds and in Linoleate than in Oleate. Postruminal disappearance of saturated fatty acids was greatest (P < 0.001) for Control; however, postruminal disappearance of total unsaturated fatty acids was greater (P = 0.002) for Linoleate vs. Oleate. Supplemental high-linoleate or high-oleate safflower seeds to cattle fed forage-based diets may negatively affect ruminal OM and fiber disappearance but not N disappearance. Provision of supplemental fat in the form of safflower seeds that are high in linoleic acid increased intestinal supply and postruminal disappearance of unsaturated fatty acids, indicating that the fatty acids apparently available for metabolism are affected by dietary fat source.

Publication types

  • Clinical Trial
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Feed*
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Carthamus tinctorius / chemistry*
  • Cattle
  • Dietary Fiber / metabolism
  • Digestion / drug effects*
  • Digestion / physiology
  • Fatty Acids, Volatile
  • Female
  • Hydrogen-Ion Concentration
  • Linoleic Acid / administration & dosage
  • Linoleic Acid / pharmacology*
  • Nitrogen / metabolism
  • Oleic Acid / administration & dosage
  • Oleic Acid / pharmacology*
  • Rumen / metabolism
  • Seeds / chemistry*

Substances

  • Dietary Fiber
  • Fatty Acids, Volatile
  • Oleic Acid
  • Linoleic Acid
  • Nitrogen