Effect of temperature in reversed phase liquid chromatography

J Chromatogr A. 2004 Oct 15;1052(1-2):39-51. doi: 10.1016/j.chroma.2004.08.052.

Abstract

The high temperature liquid chromatography (HTLC) reveals interesting chromatographic properties but even now, it misses some theoretical aspects concerning the influence of high temperature on thermodynamic and kinetic aspects of chromatography: such a knowledge is very essential for method development. In this work, the effect of temperature on solute behavior has been studied using various stationary phases which are representative of the available thermally stable materials present on the market. The thermodynamic properties were evaluated by using different mobile phases: acetonitrile-water, methanol-water and pure water. The obtained results were discussed on the basis of both type of mobile phases and type of stationary phases. Type of mobile phase was found to play an important role on the retention of solutes. The kinetic aspect was studied at various temperatures ranging from ambient temperature to high temperature (typically from about 30 to 200 degrees C) by fitting the experimental data with the Knox equation and it was shown that the efficiency is improved significantly when the temperature is increased. In this paper, we also discussed the problem of temperature control for thermostating columns which may represent a significant source of peak broadening: by taking into account the three main parameters such as heat transfer, pressure drop and band broadening resulting from the preheating tube, suitable rules are set up for a judicious choice of the column internal diameter.

MeSH terms

  • Chromatography, Liquid / methods*
  • Temperature
  • Viscosity