Kerr effect in liquid helium at temperatures below the superfluid transition

Phys Rev Lett. 2004 Oct 8;93(15):153003. doi: 10.1103/PhysRevLett.93.153003. Epub 2004 Oct 6.

Abstract

The electro-optical Kerr effect induced by a slowly varying electric field in liquid helium at temperatures below the lambda point is investigated. The Kerr constant of liquid helium is measured to be (1.43+/-0.02(stat)+/-0.04(sys)) x 10(-20) (cm/V)(2) at T=1.5 K. Within experimental uncertainty, the Kerr constant is independent of temperature in the range T=1.5 K to 2.17 K, which implies that the Kerr constant of the superfluid component of liquid helium is the same as that of normal liquid helium. Pair and higher correlations of He atoms in the liquid phase account for about 23% of the measured Kerr constant. Liquid nitrogen was used to test the experimental setup; the result for the liquid nitrogen Kerr constant is (4.38+/-0.15) x 10(-18) (cm/V)(2). Kerr effect can be used as a noncontact technique for measuring the magnitude and mapping out the distribution of electric fields inside these cryogenic insulants.