Flow cytometry-based approach to ABCG2 function suggests that the transporter differentially handles the influx and efflux of drugs

Cytometry A. 2004 Dec;62(2):129-38. doi: 10.1002/cyto.a.20072.

Abstract

Background: To better characterize the function of the ABCG2 transporter in vitro, we generated three cell lines (MXRA, MXRG, and MXRT) stably expressing ABCG2 after transfection of wild-type ABCG2 and two mutants (R482G and R482T), respectively.

Methods: ABCG2 expression and function were analyzed by flow cytometry using monoclonal antibodies, a variety of fluorescent substrates, and a series of potential inhibitors of the transporter.

Results: ABCG2 expression was detected in all cell lines. The cell lines effluxed mitoxantrone (MXR), but only the mutants effluxed rhodamine 123 (Rho123), SYTO13, doxorubicin, and daunorubicin. After incubation with MXR, intracellular accumulations were 9- and 22-fold higher in MXRA than in MXRT and MXRG cells, respectively, suggesting that ABCG2 also modulates the influx rate of the drug. Flow cytometry kinetic studies of MXR efflux showed that MXRG cells effluxed 50% of the drug at a faster rate than MXRA and MXRT cells (t50: 15.3 min vs. 27.8 and 44.5 min, respectively). MXRG cells also extruded Rho123 and SYTO13 at a faster rate than MXRT cells. ABCG2-mediated transport was inhibited by fumitremorgin C, cyclosporine A, and PSC-833, but not by verapamil or probenecid. MXRG cells displayed the highest level of resistance to MXR, doxorubicin, and daunorubicin in the cytotoxicity assays.

Conclusions: Glycine mutations at position 482 have a significant impact on ABCG2 function by modifying its substrate specificity and its influx/efflux rates. This study also demonstrates that flow cytometry constitutes a powerful tool for the kinetic analysis of ABC transporters.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters / genetics*
  • ATP-Binding Cassette Transporters / metabolism*
  • Antineoplastic Agents / metabolism*
  • Antineoplastic Agents / pharmacology
  • Cell Survival / drug effects
  • Drug Resistance, Neoplasm / physiology
  • Flow Cytometry
  • Fluorescent Antibody Technique
  • Humans
  • KB Cells
  • Mutation
  • Neoplasm Proteins / genetics*
  • Neoplasm Proteins / metabolism*
  • Transfection

Substances

  • ABCG2 protein, human
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters
  • Antineoplastic Agents
  • Neoplasm Proteins