Evidence of programmed cell death in post-phloem transport cells of the maternal pedicel tissue in developing caryopsis of maize

Plant Physiol. 2004 Nov;136(3):3572-81. doi: 10.1104/pp.104.045195. Epub 2004 Oct 22.

Abstract

We present cellular- and ultracellular-level studies here to show developmental programmed cell death (PCD) of placento-chalazal (P-C) cell layers in maternal pedicel tissue in developing caryopses of normal seed (Mn1) and in the invertase-deficient miniature (mn1) seed mutant in maize (Zea mays). PCD was evidenced by loss of nuclei and all subcellular membranous organizations in many P-C layers. The terminal deoxynucleotidyl transferase-mediated X-dUTP nick-end labeling (TUNEL) stain that is diagnostic of apoptotic-like PCD identified spatially and temporally two distinctive subdomains, which coincided with nucellar and integumental P-C layers based on their developmental origins. The early phase of PCD in the nucellar P-C was TUNEL negative and was specific to only the fertilized caryopses, indicating that the signaling for PCD in these maternal cells originated in the zygotic tissues. In fact, the initiation of PCD coincided with endosperm cellularization and was rapidly and coordinately completed prior to the beginning of the major storage phase in endosperm. Cell shape in these cell layers was also influenced by the genotype of filial endosperm. The later phase of PCD was restricted to the integumental P-C layers underneath the nucellar cells and was TUNEL positive in both genotypes. The two subdomains of the P-C layers were also distinguishable by unique cell wall-associated phenolic compounds. Based on collective evidence, we infer that the nucellar PCD may have osmolytic etiology and may lead to activation of the post-phloem transport function of the P-C layer, whereas the integumental PCD was senescent related, in particular, protecting the maturing seed against microbes that may be transported from the maternal tissue.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Apoptosis* / physiology
  • Biological Transport
  • Mutation
  • Seeds / cytology*
  • Seeds / growth & development
  • Seeds / ultrastructure
  • Zea mays / cytology*
  • Zea mays / genetics
  • Zea mays / ultrastructure