Neurodegeneration and plasticity

Int J Dev Neurosci. 2004 Nov;22(7):507-14. doi: 10.1016/j.ijdevneu.2004.07.007.

Abstract

Neurofibrillary degeneration, associated with the formation of paired helical filaments (PHF), is one of the critical neuropathological hallmarks of Alzheimer's disease (AD). Although the microtubule-associated protein tau in a hyperphosphorylated form has been established as primary PHF constituent, the process of tau phosphorylation and its potential link to degeneration is not very well understood, mostly because of the lack of a physiological in vivo model of PHF-like tau phosphorylation. PHF formation in AD follows a hierarchical pattern of development throughout different cortical areas, which closely matches the pattern of neuronal plasticity in the adult brain. Those brain areas are most early and most severely affected which are involved in the regulation of memory, learning, perception, self-awareness, consciousness, and higher brain functions that require a life-long re-fitting of connectivity, a process based on a particularly high degree of plasticity. Failures of synaptic plasticity are, thus, assumed to represent early events in the course of AD that eventually lead to alteration of tau phosphorylation. Recently, we have used the hibernation cycle, a physiological model of adaptation associated with an extraordinary high degree of structural neuronal plasticity, to analyze the potential link between synaptic plasticity, synaptic detachment and the regulation of tau phosphorylation. During torpor, a natural state of hypothermia, synaptic contacts between mossy fibers and hippocampal pyramidal neurons undergo dramatic regressive changes that are fully reversible very rapidly during euthermy. This rapid, reversible, and repeated regression of synaptic and dendritic components on CA3 neurons is associated with a reversible PHF-like phosphorylation of tau at a similar time course. The repeated formation and degradation of PHF-tau might, thus, represent a physiological mechanism not necessarily associated with pathological effects. These findings implicate an essential link between neuronal plasticity and PHF-like phosphorylation of tau, potentially involved in neurofibrillary degeneration.

Publication types

  • Review

MeSH terms

  • Aging / metabolism*
  • Alzheimer Disease / metabolism*
  • Animals
  • Brain / metabolism*
  • Humans
  • Neurodegenerative Diseases / metabolism
  • Neurofibrillary Tangles / metabolism*
  • Neuronal Plasticity*
  • Neurons / metabolism*
  • Phosphorylation
  • Synapses / metabolism
  • tau Proteins / metabolism*

Substances

  • tau Proteins