Molecular cloning, genomic organization and functional characterization of a new short-chain potassium channel toxin-like peptide BmTxKS4 from Buthus martensii Karsch(BmK)

J Biochem Mol Toxicol. 2004;18(4):187-95. doi: 10.1002/jbt.20026.

Abstract

Scorpion venom contains many small polypeptide toxins, which can modulate Na(+), K(+), Cl(-), and Ca(2+) ion-channel conductance in the cell membrane. A full-length cDNA sequence encoding a novel type of K(+)-channel toxin (named BmTxKS4) was first isolated and identified from a venom gland cDNA library of Buthus martensii Karsch (BmK). The encoded precursor contains 78 amino acid residues including a putative signal peptide of 21 residues, propeptide of 11 residues, and a mature peptide of 43 residues with three disulfide bridges. BmTxKS4 shares the identical organization of disulfide bridges with all the other short-chain K(+)-channel scorpion toxins. By PCR amplification of the genomic region encoding BmTxKS4, it was shown that BmTxKS4 composed of two exons is disrupted by an intron of 87 bp inserted between the first and the second codes of Phe (F) in the encoding signal peptide region, which is completely identical with that of the characterized scorpion K(+)-channel ligands in the size, position, consensus junctions, putative branch point, and A+T content. The GST-BmTxKS4 fusion protein was successfully expressed in BL21 (DE3) and purified with affinity chromatography. About 2.5 mg purified recombinant BmTxKS4 (rBmTxKS4) protein was obtained by treating GST-BmTxKS4 with enterokinase and sephadex chromatography from 1 L bacterial culture. The electrophysiological activity of 1.0 microM rBmTxKS4 was measured and compared by whole cell patch-clamp technique. The results indicated that rBmTxKS4 reversibly inhibited the transient outward K(+) current (I(to)), delayed inward rectifier K(+) current (I(k1)), and prolonged the action potential duration of ventricular myocyte, but it has no effect on the action potential amplitude. Taken together, BmTxKS4 is a novel subfamily member of short-strain K(+)-channel scorpion toxin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Cloning, Molecular
  • Escherichia coli
  • Genome
  • Heart / drug effects
  • In Vitro Techniques
  • Membrane Potentials / drug effects
  • Molecular Sequence Data
  • Potassium Channel Blockers / chemistry*
  • Potassium Channel Blockers / isolation & purification
  • Rabbits
  • Recombinant Fusion Proteins / biosynthesis
  • Scorpion Venoms / chemistry*
  • Scorpions / chemistry*
  • Scorpions / genetics
  • Sequence Homology, Amino Acid
  • Toxins, Biological / biosynthesis
  • Toxins, Biological / chemistry*
  • Toxins, Biological / genetics
  • Toxins, Biological / isolation & purification

Substances

  • Potassium Channel Blockers
  • Recombinant Fusion Proteins
  • Scorpion Venoms
  • Toxins, Biological