Meso-substituted [34]octaphyrin(1.1.1.0.1.1.1.0) and corrole formation in reactions of a dipyrromethanedicarbinol with 2,2'-bipyrrole

J Org Chem. 2004 Sep 17;69(19):6404-12. doi: 10.1021/jo049131z.

Abstract

The reaction of a dipyrromethanedicarbinol with 2,2'-bipyrrole leading to meso-substituted [34]octaphyrin(1.1.1.0.1.1.1.0) and/or corrole was investigated to determine the effect of key reaction parameters on the distribution of the two macrocycles. Solvent, acid catalyst, acid quantity, oxidant, oxidant quantity, and reaction time were surveyed for a model reaction affording 5,10,19,24,29,38-hexaphenyl[34]octaphyrin(1.1.1.0.1.1.1.0) (HPO) and/or meso-triphenylcorrole (TPC). HPO was found to be a fairly ubiquitous product, produced in yields as high as 23% (UV-vis), while TPC was observed infrequently, in yields up to 10% (UV-vis). A preparative-scale reaction provided HPO in an isolated yield of 25%. The methodology was extended to the synthesis of an octaphyrin bearing two different substituents in defined locations and to an octaphyrin possessing electron-withdrawing pentafluorophenyl substituents. Preferential formation of octaphyrin instead of corrole suggests that the anti conformation of 2,2'-bipyrrole is the relevant form under the reaction conditions surveyed. The spectral properties of the novel meso-substituted [34]octaphyrin(1.1.1.0.1.1.1.0) species are similar to those of the known beta-substituted analogue, including spectra consistent with the absence of macrocycle aromaticity despite a main conjugation path of 34 pi-electrons. Key to the overall study was the development of a refined synthesis of 2,2'-bipyrrole.