Effect of casting method on castability of titanium and dental alloys

J Mater Sci Mater Med. 2000 Sep;11(9):547-53. doi: 10.1023/a:1008972018025.

Abstract

Titanium, once considered to be difficult to cast because of its relatively high melting point (1670 +/- 50 degrees C) and strong chemical affinity, can now be acceptably cast using newly developed casting apparatus. The objectives of this study were to examine the castability of commercially pure (CP) titanium using an ultra high-speed centrifugal casting machine and a pressure difference-type casting unit and to compare the castability of titanium with that of conventional dental casting alloys. To determine castability, two types of patterns were used: a mesh pattern of 22 x 24 mm cut polyether thread sieve, and a saucer pattern (24 mm diameter) perforated to create four T-shaped ends. The casting equipment significantly affected the mold filling of both patterns (p < 0.001). The castability indices obtained from both patterns of CP titanium cast in the centrifugal casting machine were significantly (p < 0.05) better than the indices of the castings produced in the pressure-difference casting unit. The radiographs of the saucer pattern cast in the centrifugal casting machine showed some pores that were fewer and smaller in size than the pores found in castings made in the pressure-difference unit. When the ultra high-speed centrifugal casting machine was used with the manufacturer's recommended mold material, the castability of titanium was similar to that of gold alloy or Ni-Cr alloy cast by conventional means.