Effects of UV-B irradiation on a marine microecosystem

Photochem Photobiol. 2004 Jul-Aug:80:78-83. doi: 10.1562/TM-03-14.1.

Abstract

Purpose of this work was to study the effect of UV irradiation on a microecosystem consisting of several interacting species. The system chosen was of a hypersaline type, where all the species present live at high salt concentration; it comprises different bacteria; a producer, the photosynthetic green alga Dunaliella salina; and a consumer, the ciliated protozoan Fabrea salina, which form a complete food chain. We were able to establish the initial conditions that give rise to a self-sustaining microecosystem, stable for at least 3 weeks. We then determined the effect of UV irradiation on this microecosystem under laboratory-controlled conditions, in particular by measuring the critical UV exposure for the two main components of the microecosystem (algae and protozoa) under UV-B irradiances comparable to those of solar irradiation. In our experiments, we varied irradiance, total dose and spectral composition of the actinic light. The critical doses at irradiances of the order of 56 kJ/m(2) (typical average daily irradiance in a sunny summer day in Pisa), measured for each main component of the microecosystem (algae and ciliates), turned out to be around 70 kJ/m(2) for ciliates and 50 kJ/m(2) for D. salina. By exposing microecosystems to daily UV-B irradiances of the order of 8 kJ/m(2) (typical average daily irradiance in a sunny winter day in Pisa), we found no effect at total doses of the order of the critical doses at high irradiances, showing that the reciprocity law does not hold. We have also measured a preliminary spectral-sensitive curve of the UV effects, which shows an exponential decay with wavelength.

MeSH terms

  • Animals
  • Ciliophora
  • Climate
  • Ecosystem*
  • Eukaryota / radiation effects
  • Seawater*
  • Ultraviolet Rays*