Goal-directed whisking increases phase-locking between vibrissa movement and electrical activity in primary sensory cortex in rat

Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12348-53. doi: 10.1073/pnas.0308470101. Epub 2004 Aug 5.

Abstract

We tested the hypothesis that behavioral context modulates phase-locking between rhythmic motor activity and concomitant electrical activity induced in primary sensory (S1) cortex. We used exploratory whisking by rat as a model system and recorded two measures: (i) the mystacial electromyogram ( nabla EMG) as a surrogate of vibrissa position, and (ii) the field potential ( nabla LFP) in S1 cortex as an indicator of electrical activity. The degree to which the nabla EMG and nabla LFP were phase-locked was compared for three categories of rhythmic whisking: (i) searching for an object with the vibrissae for a food reward, (ii) whisking in air for the goal of returning to the home cage, and (iii) whisking with no reward. We observed that the magnitude of phase-locking was nearly tripled for the two rewarded conditions compared to unrewarded whisking. Critically, increased locking was not accompanied by an increase in the amplitude of the cortical nabla LFP for the rewarded tasks. Additional experiments showed that there was no significant relation between the amplitude of a sensory-evoked response in S1 cortex and the magnitude of the locking between the nabla EMG and the nabla LFP during whisking. We conclude that the behavioral context of a whisking task can increase the modulation of S1 cortical activity by motor output without a concomitant increase in the magnitude of activity.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Behavior, Animal
  • Electromyography
  • Electrophysiology
  • Exploratory Behavior
  • Female
  • Models, Neurological
  • Rats
  • Rats, Long-Evans
  • Reward
  • Somatosensory Cortex / physiology*
  • Vibrissae / physiology*