Growth response and sapwood hydraulic properties of young lodgepole pine following repeated fertilization

Tree Physiol. 2004 Oct;24(10):1099-108. doi: 10.1093/treephys/24.10.1099.

Abstract

We examined how tree growth and hydraulic properties of branches and boles are influenced by periodic (about 6 years) and annual fertilization in two juvenile lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) stands in the interior of British Columbia, Canada. Mean basal area (BA), diameter at breast height (DBH) and height increments and percent earlywood and sapwood hydraulic parameters of branches and boles were measured 7 or 8 years after the initial treatments at Sheridan Creek and Kenneth Creek. At Sheridan Creek, fertilization significantly increased BA and DBH increments, but had no effect on height increment. At Kenneth Creek, fertilization increased BA, but fertilized trees had significantly lower height increments than control trees. Sapwood permeability was greater in lower branches of repeatedly fertilized trees than in those of control trees. Sapwood permeabilities of the lower branches of trees in the control, periodic and annual treatments were 0.24 x 10(-12), 0.35 x 10(-12) and 0.45 x 10(-12) m2 at Kenneth Creek; and 0.41 x 10(-12), 0.54 x 10(-12) and 0.65 x 10(-12) m2 at Sheridan Creek, respectively. Annual fertilization tended to increase leaf specific conductivities and Huber values of the lower branches of trees at both study sites. We conclude that, in trees fertilized annually, the higher flow capacity of lower branches may reduce the availability of water to support annual growth of the leader and upper branches.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Pinus / growth & development*
  • Pinus / physiology
  • Plant Stems / physiology
  • Plant Transpiration / physiology
  • Trees / growth & development*
  • Trees / physiology