Biodistribution of filamentous phage peptide libraries in mice

Mol Biol Rep. 2004 Jun;31(2):121-9. doi: 10.1023/b:mole.0000031459.14448.af.

Abstract

In vivo phage display is a new approach to acquire peptide molecules that bind stably to a given target. Phage peptide display libraries have been selected in mice and humans and numerous vasculature-targeting peptides have been reported. However, in vivo phage display has not typically produced molecules that extravasate to target specific organ or tumor antigens. Phage selections in animals have been performed for very short times without optimization for biodistribution or clearance rates to a particular organ. It is hypothesized that peptides that home to a desired antigen/organ can be obtained from in vivo phage experiments by optimization of incubation times, phage extraction and propagation procedures. To accomplish this goal, one must first gain a better understanding of the in vivo biodistribution and rate of clearance of engineered phage peptide display libraries. While the fate of wild type phage in rodents has been reported, the in vivo biodistribution of the commonly used engineered fd-tet M13 phage peptide display libraries (such as in the fUSE5 vector system) have not been well established. Here we report the biodistribution and clearance properties of fd-tet fifteen amino acid random peptide display libraries in fUSE5 phage in three common mouse models employed for drug discovery - CF-1, nude, and SCID mice.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bacteriophage M13 / isolation & purification
  • Bacteriophage M13 / metabolism*
  • Mice
  • Mice, Inbred Strains
  • Peptide Library*
  • Tissue Distribution

Substances

  • Peptide Library