Comparison of the effects of laser, ultrasound, and combined laser + ultrasound treatments in experimental tendon healing

Lasers Surg Med. 2004;35(1):84-9. doi: 10.1002/lsm.20046.

Abstract

Background and objective: Therapeutic ultrasound (US) and laser (L) treatments accelerate and facilitate wound healing, and also have beneficial effects on tendon healing. This randomized control study was designed to evaluate the effects of low-intensity US and low-level laser therapy (LLLT) on tendon healing in rats.

Study design/materials and methods: Eighty-four healthy male Swiss-Albino rats were divided into three groups consisting of 28 rats, the left Achilles tendons were used as treatment and the right Achilles tendons as controls. The right and left Achilles tendons of rats were traumatized longitudinally. The treatment was started on postinjury day one. We applied the treatment protocols including low-intensity US treatment in Group I (US Group), Sham US in Group II (SUS Group), LLLT in Group III (L Group), Sham L in Group IV (SL Group), US and LLLT in Group V (US + L Group), and Sham US and Sham L in Group VI (SUS + SL Group). The US treatment was applied with a power of 0.5 W/cm2, a frequency of 1 MHz, continuously, 5 minutes daily. A low-level Ga-As laser was applied with a 904 nm wavelength, 6 mW average power, 1 J/ cm2 dosage, 16 Hz frequency, for 1 minute duration, continuously. In the control groups, the similar procedures as in the corresponding treatment groups were applied with no current (Sham method). The treatment duration was planned for 9 days (sessions) in all groups, except the rats used for biochemical evaluation on the 4th day of treatment, which were treated for 4 days. We measured the levels of the tissue hydroxyproline for biochemical evaluation on the 4th, 10th, and 21st days following the beginning of treatment and the tendon breaking strength on the 21st day following the beginning of treatment for biomechanical evaluation. Seven rats in each group were killed on the 4th, 10th, and 21st days for biochemical evaluation and on the 21st day for biomechanical evaluation.

Results: The hydroxyproline levels were found to be significantly increased in the treatment groups on the 10th and 21st days compared to their control groups (P < 0.05). In comparison of the treatment groups on the 4th, 10th, and 21st days of the treatment, the levels of tissue hydroxyproline were found to be more increased in combined US+L Group compared with US Group and L Group, but the difference was not significant (P > 0.05). In comparison of the tendon breaking strengths, it was found as significantly increased in the treatment groups compared with their control groups (P < 0.05), although there was no significant difference between the treatment groups.

Conclusions: Although US, L, and combined US + L treatments increased tendon healing biochemically and biomechanically more than the control groups, no statistically significant difference was found between them. Also we did not find significantly more cumulative positive effects of combined treatment. As a result, both of these physical modalities can be used successfully in the treatment of tendon healing.

MeSH terms

  • Achilles Tendon / injuries*
  • Animals
  • Combined Modality Therapy
  • Laser Therapy*
  • Male
  • Random Allocation
  • Rats
  • Tendon Injuries / therapy*
  • Ultrasonic Therapy*
  • Wound Healing / radiation effects*