The chicken serotonin transporter discriminates between serotonin-selective reuptake inhibitors. A species-scanning mutagenesis study

J Biol Chem. 2004 Oct 1;279(40):42147-56. doi: 10.1074/jbc.M405579200. Epub 2004 Jul 22.

Abstract

The serotonin transporter (SERT) belongs to a family of sodium chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from extracellular spaces. SERT represents the main pharmacological target in the treatment of several clinical conditions, including depression and anxiety. Serotonin-selective reuptake inhibitors and tricyclic antidepressants are the most predominantly prescribed drugs in the treatment of depression. In addition to antidepressants also psychostimulants, like cocaine and amphetamines, are important SERT antagonists. In the present study, we report the cloning and characterization of chicken SERT. Although the uptake kinetic was very similar to human SERT, the pharmacological profiles differed considerably for the two species. We find that chicken SERT is capable of discriminating between different serotonin-selective reuptake inhibitors; thus, the potency of S-citalopram and paroxetine is reduced more than 40-fold. A cross-species chimera strategy was undertaken and followed by species-scanning mutagenesis. Differences in pharmacological profiles were tracked to amino acid residues 169, 172, and 586 in human SERT. Structure-activity studies on structurally related compounds indicated that species divergences in drug sensitivity between human and chicken SERT were arising from differences in coordination or recognition of an important aminomethyl pharmacophoric substructure, which is shared by all high affinity antidepressants. Consequently, we suggest that Ala(169) and Ile(172) of human SERT are important residues in sensing the N-methylation state of SERT antagonists.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism*
  • Chickens
  • Cloning, Molecular
  • Conserved Sequence
  • Membrane Glycoproteins / genetics
  • Membrane Glycoproteins / metabolism*
  • Membrane Transport Proteins*
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism*
  • Protein Binding
  • Selective Serotonin Reuptake Inhibitors / metabolism*
  • Serotonin Plasma Membrane Transport Proteins

Substances

  • Carrier Proteins
  • Membrane Glycoproteins
  • Membrane Transport Proteins
  • Nerve Tissue Proteins
  • Serotonin Plasma Membrane Transport Proteins
  • Serotonin Uptake Inhibitors