Differential regulation of matrix metalloproteinase-2 and -9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1beta

J Biol Chem. 2004 Sep 17;279(38):39513-9. doi: 10.1074/jbc.M405844200. Epub 2004 Jul 21.

Abstract

Matrix metalloproteinases (MMPs), a family of endoproteinases, are implicated in cardiac remodeling. Interleukin-1beta (IL-1beta), which is increased in the heart following myocardial infarction, increases expression and activity of MMP-2 (gelatinase A) and -9 (gelatinase B) in cardiac fibroblasts. Previously, we have shown that IL-1beta activates ERK1/2, JNKs, and protein kinase C (PKC). However, signaling pathways involved in the regulation of MMP-2 and -9 expression and activity are not yet well understood. Using adult rat cardiac fibroblasts, we show that inhibition of ERK1/2 and JNKs inhibits IL-1beta-stimulated increases in MMP-9, not MMP-2, expression and activity. Chelerythrine, an inhibitor of PKC, inhibited activation of ERK1/2 and JNKs and expression and activity of both MMPs. Selective inhibition of PKC-alpha/beta1 using Gö6976 inhibited JNKs activation and the expression and activity of MMP-9, not MMP-2. Inhibition of PKC-theta and PKC-zeta using pseudosubstrates inhibited IL-1beta-stimulated activation of ERK1/2 and JNKs and the expression and activity of MMP-2 and -9. Inhibition of PKC-epsilon had no effect. IL-1beta activated NF-kappaB pathway as measured by increased phosphorylation of IKKalpha/beta and IkappaB-alpha. Inhibition of ERK1/2, JNKs, and PKC-alpha/beta1 had no effect on NF-kappaB activation, whereas inhibition of PKC-theta and PKC-zeta inhibited IL-1beta-stimulated activation of NF-kappaB. SN50, NF-kappaB inhibitor peptide, inhibited IL-1beta-stimulated increases in MMP-2 and -9 expression and activity. These observations suggest that 1) activation of ERK1/2 and JNKs plays a critical role in the regulation of MMP-9, not MMP-2, expression and activity; 2) PKC-alpha/beta1 act upstream of JNKs, not ERK1/2; 3) PKC-zeta and -theta, not PKC-epsilon, act upstream of JNKs, ERK1/2, and NF-kappaB; and 4) activation of NF-kappaB stimulates expression and activity of MMP-2 and -9.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Enzyme Inhibitors / pharmacology
  • Fibroblasts / drug effects
  • Fibroblasts / enzymology
  • Gene Expression Regulation, Enzymologic / drug effects
  • Interleukin-1 / pharmacology*
  • Isoenzymes / metabolism
  • JNK Mitogen-Activated Protein Kinases
  • Matrix Metalloproteinase 2 / genetics*
  • Matrix Metalloproteinase 2 / metabolism*
  • Matrix Metalloproteinase 9 / genetics*
  • Matrix Metalloproteinase 9 / metabolism*
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinases / metabolism
  • Myocardium / cytology*
  • Myocardium / enzymology
  • NF-kappa B / metabolism
  • Protein Kinase C / metabolism
  • Protein Kinase C-theta
  • Rats

Substances

  • Enzyme Inhibitors
  • Interleukin-1
  • Isoenzymes
  • NF-kappa B
  • protein kinase C zeta
  • Prkcq protein, rat
  • Protein Kinase C
  • Protein Kinase C-theta
  • JNK Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • Matrix Metalloproteinase 2
  • Matrix Metalloproteinase 9