Threshold-photoelectron-spectroscopy-coincidence study of the double photoionization of HBr

J Chem Phys. 2004 Apr 15;120(15):6980-4. doi: 10.1063/1.1669382.

Abstract

A threshold-photoelectron-coincidence spectrum of HBr has been recorded in the 32.2-35.8 eV photon energy range, with a resolution of approximately 0.01 eV, using a synchrotron radiation source. The X (3)Sigma(-) and a (1)Delta(2) states of the HBr(2+) dication are clearly observed in the spectrum, while there is no clear evidence for the formation of the b (1)Sigma(+) electronic state. For the first two states, the vibrational states v=0-3 have been resolved, while for the ground X (3)Sigma(-) state also spin-orbit splitting has been detected. The results appear in good agreement with previous experimental observations. A comparison with theoretical predictions indicates the role of "noncovalent" contributions to the interaction between the two atomic partners for the formation of metastable states.