The Baltic haline conveyor belt or the overturning circulation and mixing in the Baltic

Ambio. 2004 Jun;33(4-5):261-6.

Abstract

A study of the water-mass circulation of the Baltic has been undertaken by making use of a three dimensional Baltic Sea model simulation. The saline water from the North Atlantic is traced through the Danish Sounds into the Baltic where it upwells and mixes with the fresh water inflow from the rivers forming a Baltic haline conveyor belt. The mixing of the saline water from the Great Belt and Oresund with the fresh water is investigated making use of overturning stream functions and Lagrangian trajectories. The overturning stream function was calculated as a function of four different vertical coordinates (depth, salinity, temperature and density) in order to understand the path of the water and where it upwells and mixes. Evidence of a fictive depth overturning cell similar to the Deacon Cell in the Southern Ocean was found in the Baltic proper corresponding to the gyre circulation around Gotland, which vanishes when the overturning stream function is projected on density layers. A Lagrangian trajectory study was performed to obtain a better view of the circulation and mixing of the saline and fresh waters. The residence time of the water masses in the Baltic is calculated to be 26-29 years and the Lagrangian dispersion reaches basin saturation after 5 years.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Baltic States
  • Climate*
  • Computer Simulation*
  • Forecasting
  • Models, Theoretical*
  • Oceans and Seas
  • Water Movements*