Phosphorus distribution in dairy manures

J Environ Qual. 2004 Jul-Aug;33(4):1528-34. doi: 10.2134/jeq2004.1528.

Abstract

The chemical composition of manure P is a key factor determining its potential bioavailability and susceptibility to runoff. The distribution of P forms in 13 dairy manures was investigated with sequential fractionation coupled with orthophosphate-releasing enzymatic hydrolysis. Among the 13 dairy manures, manure total P varied between 4100 and 18,300 mg kg(-1) dry matter (DM). Water-extractable P was the largest fraction, with inorganic phosphorus (P(i)) accounting for 12 to 44% of manure total P (1400-6800 mg kg(-1)) and organic phosphorus (P(o)) for 2 to 23% (130-1660 mg kg(-1)), respectively. In the NaHCO(3) fraction, P(i) varied between 740 and 4200 mg P kg(-1) DM (4-44% of total manure P), and P(o) varied between 340 and 1550 mg P kg(-1) DM (2-27% of total manure P). In the NaOH fraction, P(i) fluctuated around 200 mg P kg(-1) DM, and P(o) ranged from 130 to 630 mg P kg(-1) DM. Of the enzymatically hydrolyzable P(o) in the three fractions, phytate-like P dominated, measuring 26 to 605 mg kg(-1) DM, whereas monoester P and DNA-like P were relatively low and less variable. Although concentrations of various P forms varied considerably, significant correlations between manure total P and certain P forms were observed. For example, H(2)O-extracted P(i) was correlated with total manure P (R(2) = 0.62), and so was NaOH-extracted P(o) (R(2) = 0.81). Data also show that the amount of P released by a single extraction with sodium acetate (100 mM, pH 5.0) was equivalent to the sum of P in all three fractions (H(2)O-, NaHCO(3)-, and NaOH-extractable P). Thus, a single extraction by sodium acetate buffer could provide an efficient evaluation of plant-available P in animal manure, while the sequential fractionation approach provides more detailed characterization of manure P.

MeSH terms

  • Animals
  • Biological Availability
  • Cattle
  • Dairying
  • Environmental Monitoring
  • Hydrogen-Ion Concentration
  • Hydrolysis
  • Manure*
  • Phosphorus / analysis*
  • Phosphorus / chemistry
  • Phosphorus / metabolism
  • Soil Pollutants / analysis*
  • Soil Pollutants / metabolism

Substances

  • Manure
  • Soil Pollutants
  • Phosphorus