Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices

Opt Lett. 2004 Jun 15;29(12):1405-7. doi: 10.1364/ol.29.001405.

Abstract

We report the diffraction properties at wavelengths of 632.8 and 1550 nm for volume transmission gratings made of a sequence of continuously aligned nematic liquid-crystal layers separated by isotropic polymer slices. The gratings are generated by holographically curing a solution of liquid crystal diluted in an isotropic prepolymer by means of a laser beam at a wavelength of 352 nm with a total intensity of approximately 10 mW/cm2. A diffraction efficiency of 98% was measured, and an electric field as low as 5 V/microm switches off the phase grating. Measured angular spectra are fitted by use of the modified coupled-mode theory including the effects of grating birefringence.