p53 differentially inhibits cell growth depending on the mechanism of telomere maintenance

Mol Cell Biol. 2004 Jul;24(13):5967-77. doi: 10.1128/MCB.24.13.5967-5977.2004.

Abstract

Telomere stabilization is critical for tumorigenesis. A number of tumors and cell lines use a recombination-based mechanism, alternative lengthening of telomeres (ALT), to maintain telomere repeat arrays. Current data suggest that the mutation of p53 facilitates the activation of this pathway. In addition to its functions in response to DNA damage, p53 also acts to suppress recombination, independent of transactivation activity, raising the possibility that p53 might regulate the ALT mechanism via its role as a regulator of recombination. To test the role of p53 in ALT we utilized inducible alleles of human p53. We show that expression of transactivation-incompetent p53 inhibits DNA synthesis in ALT cell lines but does not affect telomerase-positive cell lines. The expression of temperature-sensitive p53 in clonal cell lines results in ALT-specific, transactivation-independent growth inhibition, due in part to the perturbation of S phase. Utilizing chromatin immunoprecipitation assays, we demonstrate that p53 is associated with the telomeric complex in ALT cells. Furthermore, the inhibition of DNA synthesis in ALT cells by p53 requires intact specific DNA binding and suppression of recombination functions. We propose that p53 causes transactivation-independent growth inhibition of ALT cells by perturbing telomeric recombination.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alleles
  • Cell Division / genetics*
  • Cell Line
  • DNA Replication
  • Humans
  • Mutation / physiology
  • Recombination, Genetic
  • S Phase
  • Telomere / metabolism*
  • Transfection
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism
  • Tumor Suppressor Protein p53 / physiology*

Substances

  • Tumor Suppressor Protein p53