Evaluation of the tensile strengths of four monofilament absorbable suture materials after immersion in canine urine with or without bacteria

Am J Vet Res. 2004 Jun;65(6):847-53. doi: 10.2460/ajvr.2004.65.847.

Abstract

Objective: To evaluate the tensile strength, elongation, and degradation of 4 monofilament absorbable suture materials that undergo degradation by hydrolysis in specimens of canine urine with various physical characteristics.

Sample population: 4 monofilament absorbable sutures (polydioxanone, poliglecaprone 25, polyglyconate, and glycomer 631).

Procedure: Voided urine was collected from 6 healthy dogs, pooled, filter-sterilized, and prepared to provide 5 media: sterile neutral (pH, 7.0), sterile acidic (pH, 6.2), sterile basic (pH, 8.8), Escherichia coli-inoculated, and Proteus mirabilis-inoculated urine. Ten strands of each suture material were immersed in each of the media for 0 to 28 days. Tensile strength and elongation of each suture material were evaluated by use of a texture analyzer on days 0, 1, 3, 7, 10, 14, 21, and 28.

Results: Reduction in tensile strength was detected for all materials in all urine specimens over time. Polyglyconate and polydioxanone had superior tensile strengths in sterile neutral and E. coli-inoculated urine, and polydioxanone retained the greatest tensile strength throughout the study period. All suture materials disintegrated before day 7 in P. mirabilis-inoculated urine.

Conclusions and clinical relevance: Polydioxanone, polyglyconate, and glycomer 631 may be acceptable for urinary bladder closure in the presence of sterile neutral and E. coli-contaminated urine. Tensile strength of poliglecaprone 25 in urine may be unacceptable by the critical healing time for bladder tissue (14 to 21 days). During bladder surgery, exposure of suture material that degrades via hydrolysis to urine containing Proteus spp should be minimized.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Dioxanes
  • Dogs
  • Hydrogen-Ion Concentration
  • Materials Testing / veterinary*
  • Polydioxanone
  • Polyesters
  • Polymers
  • Sutures / veterinary*
  • Tensile Strength*
  • Time Factors
  • Urine / microbiology*

Substances

  • Dioxanes
  • Polyesters
  • Polymers
  • glycomer 631
  • Polydioxanone
  • glycolide E-caprolactone copolymer
  • polyglyconate