Evaluation of the imaging properties of an amorphous selenium-based flat panel detector for digital fluoroscopy

Med Phys. 2004 May;31(5):1166-75. doi: 10.1118/1.1707755.

Abstract

The imaging performance of an amorphous selenium (a-Se) flat-panel detector for digital fluoroscopy was experimentally evaluated using the spatial frequency dependent modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). These parameters were investigated at beam qualities and exposures within the range typical of gastrointestinal fluoroscopic imaging (approximately 0.1 - 10 microR, 75 kV). The investigation does not take into consideration the detector cover, which in clinical use will lower the DQE measured here by its percent attenuation. The MTF was found to be less than the expected aperture response and the NPS was not white which together indicate presampling blurring. The cause of this blurring was attributed to charge trapping at the interface between two different layers of the a-Se. The effect on the DQE was also consistent with presampling blur, which reduces the aliasing in the NPS and thereby reduces the spatial frequency dependence of the DQE. (The DQE was independent of spatial frequency from 0.12 to 0.73 mm(-1) due to antialiasing of the NPS.) Moreover, the first zero of the measured MTF and the aperture response appeared at the same spatial frequency (6.66 mm(-1) for a pixel of 150 microm). Hence, the geometric fill factor (77%) was increased to an effective fill factor of 99 +/- 1%. A large scale ( approximately 32 pixels) correlation in the noise due to the configuration of the readout electronics caused increased noise power in the gate line NPS at low spatial frequency (< 0.1 mm(-1)). The DQE (f = 0) was exposure independent over a large range of exposures but became exposure dependent at low exposures due to the electronic noise.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Equipment Design
  • Equipment Failure Analysis / methods*
  • Fluoroscopy / instrumentation*
  • Fluoroscopy / methods
  • Phantoms, Imaging
  • Radiographic Image Enhancement / instrumentation*
  • Radiographic Image Enhancement / methods
  • Radiographic Image Interpretation, Computer-Assisted / instrumentation*
  • Radiographic Image Interpretation, Computer-Assisted / methods
  • Reproducibility of Results
  • Selenium / radiation effects*
  • Sensitivity and Specificity
  • Transducers*

Substances

  • Selenium