Infrared reflection absorption spectroscopy of amphipathic model peptides at the air/water interface

Biophys J. 2004 Jun;86(6):3750-8. doi: 10.1529/biophysj.103.035964.

Abstract

The linear sequence KLAL (KLALKLALKALKAALKLA-NH(2)) and its corresponding d,l-isomers k(9)a(10)-KLAL (KLALKLALkaLKAALKLA-NH(2)) and l(11)k(12)-KLAL (KLALKLALKAlkAALKLA-NH(2)) are model compounds for potentially amphipathic alpha-helical peptides which are able to bind to membranes and to increase the membrane permeability in a structure- and target-dependent manner (Dathe and Wieprecht, 1999) We first studied the secondary structure of KLAL and its analogs bound to the air/water using infrared reflection absorption spectroscopy. For the peptide films the shape and position of the amide I and amide II bands indicate that the KLAL adopts at large areas per molecule an alpha-helical secondary structure, whereas at higher surface pressures or smaller areas it converts into a beta-sheet structure. This transition could be observed in the compression isotherm as well as during the adsorption at the air/water interface from the subphase as a function of time. The secondary structures are essentially orientated parallel to the air/water interface. The analogs with d-amino acids in two different positions of the sequence, k(9)a(10)-KLAL and l(11)k(12)-KLAL, form only beta-sheet structures at all surface pressures. The observed results are interpreted using a comparison of hydrophobic moments calculated for alpha-helices and beta-sheets. The differences between the hydrophobic moments calculated using the consensus scale are not large. Using the optimal matching hydrophobicity scale or the whole-residue hydrophobicity scale the beta-sheet even has the larger hydrophobic moment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Cell Membrane Permeability / physiology*
  • Hydrophobic and Hydrophilic Interactions*
  • Peptides / chemistry*
  • Protein Structure, Secondary / physiology
  • Spectrophotometry, Infrared*

Substances

  • Peptides