Steroids and exogenous gamma-ENaC subunit modulate cation channels formed by alpha-ENaC in human B lymphocytes

J Biol Chem. 2004 Aug 6;279(32):33206-12. doi: 10.1074/jbc.M405455200. Epub 2004 Jun 8.

Abstract

Previous studies using whole-cell recording methods suggest that human B lymphocytes express an amiloride-sensitive, sodium-permeable channel. The present studies aim to determine whether this channel has biophysical properties and a molecular structure related to the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC). Reverse transcriptase polymerase chain reaction and Northern blots showed that human B lymphocytes express messages for both alpha- and beta- but not gamma-ENaC. Western blots showed that both alpha- and beta- but not gamma-ENaC proteins are expressed and strongly reduced by antisense oligonucleotides. Patch clamp experiments demonstrated that lymphocyte sodium channels are not active in cell-attached patches. However, membrane stretch can activate a 21-pS nonselective cation channel. The frequency of observance of this channel was significantly reduced by antisense oligonucleotide against alpha-ENaC but not by antisense oligonucleotide against beta-ENaC, indicating that only the alpha subunit of ENaC is necessary to form stretch-activated cation channels. Aldosterone (1.5 microm) reduced the frequency of observance of 21-pS alpha-ENaC channels and simultaneously induced the appearance of spontaneously active 10-pS channels. Antisense oligonucleotide experiments showed that this 10-pS channel is formed from alpha- and beta-ENaC. After expression of exogenous gamma-ENaC, aldosterone again reduced the frequency of observance of the 21-pS alpha-ENaC channel but induced the appearance of a 5-pS channel, presumably a alphabetagamma-ENaC channel. In the absence of aldosterone, the alpha subunit forms an alpha-cryptic channel that is activated by stretch, and in the presence of aldosterone, beta and alpha subunits together form an active channel that is modulated by aldosterone.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aldosterone / pharmacology
  • Amiloride / pharmacology
  • B-Lymphocytes / chemistry
  • B-Lymphocytes / metabolism*
  • Cells, Cultured
  • Electric Conductivity
  • Epithelial Sodium Channels
  • Gene Expression / drug effects
  • Humans
  • Mechanoreceptors / physiology
  • Oligonucleotides, Antisense / pharmacology
  • Patch-Clamp Techniques
  • RNA, Messenger / analysis
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sodium Channels / biosynthesis
  • Sodium Channels / drug effects*
  • Sodium Channels / genetics
  • Sodium Channels / pharmacology*
  • Sodium Channels / physiology*
  • Steroids / pharmacology*
  • Transfection

Substances

  • Epithelial Sodium Channels
  • Oligonucleotides, Antisense
  • RNA, Messenger
  • Sodium Channels
  • Steroids
  • Aldosterone
  • Amiloride