Recirculation of nanoliter volumes within microfluidic channels

Anal Chem. 2004 Jun 1;76(11):3018-22. doi: 10.1021/ac0353942.

Abstract

A microfluidic device is described, capable of recirculating nanoliter volumes in restricted microchannel segments. The device consists of a PDMS microfluidic structure, reversibly sealed to a glass substrate with integrated platinum electrodes. The integrated electrodes generate electroosmotic flow locally, which results in a cycling flow in the channel segment between the two electrodes in case one channel exit is closed (dead-end channel). This cycling flow is a consequence of the counterbalancing hydrodynamic pressure against the electroosmotically generated flow. Acid-base indicators were employed to study the formation of H(+) and OH(-) at both the in-channel electrodes. The formation of acid can locally change the zeta-potential of the channel wall, which will affect the flow profile. Using this method, small analyte volumes can be mixed for prolonged times within well-defined channel segments and/or exposed to in-channel sensor surfaces.