Purification and biochemical properties of a thermostable xylose-tolerant beta- D-xylosidase from Scytalidium thermophilum

J Ind Microbiol Biotechnol. 2004 May;31(4):170-6. doi: 10.1007/s10295-004-0129-6. Epub 2004 May 25.

Abstract

The thermophilic fungus Scytalidium thermophilum produced large amounts of periplasmic beta- D-xylosidase activity when grown on xylan as carbon source. The presence of glucose in the fresh culture medium drastically reduced the level of beta- D-xylosidase activity, while cycloheximide prevented induction of the enzyme by xylan. The mycelial beta-xylosidase induced by xylan was purified using a procedure that included heating at 50 degrees C, ammonium sulfate fractioning (30-75%), and chromatography on Sephadex G-100 and DEAE-Sephadex A-50. The purified beta- D-xylosidase is a monomer with an estimated molecular mass of 45 kDa (SDS-PAGE) or 38 kDa (gel filtration). The enzyme is a neutral protein (pI 7.1), with a carbohydrate content of 12% and optima of temperature and pH of 60 degrees C and 5.0, respectively. beta- D-Xylosidase activity is strongly stimulated and protected against heat inactivation by calcium ions. In the absence of substrate, the enzyme is stable for 1 h at 60 degrees C and has half-lives of 11 and 30 min at 65 degrees C in the absence or presence of calcium, respectively. The purified beta- D-xylosidase hydrolyzed p-nitrophenol-beta- D-xylopyranoside and p-nitrophenol-beta- D-glucopyranoside, exhibiting apparent K(m) and V(max) values of 1.3 mM, 88 micromol min(-1) protein(-1) and 0.5 mM, 20 micromol min(-1) protein(-1), respectively. The purified enzyme hydrolyzed xylobiose, xylotriose, and xylotetraose, and is therefore a true beta- D-xylosidase. Enzyme activity was completely insensitive to xylose, which inhibits most beta-xylosidases, at concentrations up to 200 mM. Its thermal stability and high xylose tolerance qualify this enzyme for industrial applications. The high tolerance of S. thermophilum beta-xylosidase to xylose inhibition is a positive characteristic that distinguishes this enzyme from all others described in the literature.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ascomycota / enzymology*
  • Ascomycota / growth & development
  • Culture Media
  • Hot Temperature*
  • Hydrogen-Ion Concentration
  • Industrial Microbiology
  • Kinetics
  • Mycelium / metabolism
  • Substrate Specificity
  • Xylans / metabolism
  • Xylose / metabolism*
  • Xylosidases / chemistry
  • Xylosidases / isolation & purification
  • Xylosidases / metabolism*

Substances

  • Culture Media
  • Xylans
  • Xylose
  • Xylosidases
  • exo-1,4-beta-D-xylosidase