Structural model for an AxxxG-mediated dimer of surfactant-associated protein C

Eur J Biochem. 2004 Jun;271(11):2086-92. doi: 10.1111/j.1432-1033.2004.04107.x.

Abstract

The pulmonary surfactant prevents alveolar collapse and is required for normal pulmonary function. One of the important components of the surfactant besides phospholipids is surfactant-associated protein C (SP-C). SP-C shows complex oligomerization behavior and a transition to beta-amyloid-like fibril structures, which are not yet fully understood. Besides this nonspecific oligomerization, MS and chemical cross-linking data combined with CD spectra provide evidence of a specific, mainly alpha-helical, dimer at low to neutral pH. Furthermore, resistance to CNBr cleavage and dual NMR resonances of porcine and human recombinant SP-C with Met32 replaced by isoleucine point to a dimerization site located at the C-terminus of the hydrophobic alpha-helix of SP-C, where a strictly conserved heptapeptide sequence is found. Computational docking of two SP-C helices, described here, reveals a dimer with a helix-helix interface that strikingly resembles that of glycophorin A and is mediated by an AxxxG motif similar to the experimentally determined GxxxG pattern of glycophorin A. It is highly likely that mature SP-C adopts such a dimeric structure in the lamellar bilayer systems found in the surfactant. Dimerization has been shown in previous studies to have a role in sorting and trafficking of SP-C and may also be important to the surfactant function of this protein.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Motifs
  • Animals
  • Computational Biology
  • Dimerization
  • Humans
  • Models, Molecular*
  • Nuclear Magnetic Resonance, Biomolecular
  • Pulmonary Surfactant-Associated Protein C / chemistry*
  • Pulmonary Surfactant-Associated Protein C / metabolism

Substances

  • Pulmonary Surfactant-Associated Protein C