A molecular basis for embryo apposition at the luminal epithelium

Mol Cell Endocrinol. 2004 Apr 30;219(1-2):95-104. doi: 10.1016/j.mce.2004.01.007.

Abstract

To obtain a gene expression profile during embryo apposition to the luminal epithelium, we isolated mouse luminal epithelium from implantation (IM) and interimplantation (INTER) sites using laser capture microdissection (LCM), and analyzed their gene expression by microarray analysis. IM and INTER sites were sampled on day 4.5 after mating of female mice with fertile males (day 0.5 = vaginal plug). RNA was extracted, amplified, labeled, and hybridized to microarrays and results were analyzed using the significance analysis of microarrays (SAM) method. Comparison of IM and INTER sites by SAM identified 73 genes most highly ranked at IM, while 13 genes most highly expressed at the INTER sites, within the estimated false discovery rate (FDR) of 0.163. Among 73 genes at IM, 20 were ESTs or were of unknown function, and the remain 53 genes had known functions mainly relating to cellular structuring and others such as cell cycling, gene/protein expression, immune responses, invasion, metabolism, oxidative stress, or signal transduction. Specifically, of the 24 structural genes, 14 were implicated in extracellular matrix and tissue remodeling. Meanwhile, of the 13 genes that were highly expressed at INTER, eight were ESTs or of unknown function, and the remaining five were implicated in metabolism, signal transduction, and gene/protein expression. Among these 58 (53 + 5) genes with known functions, 13 genes (22.4%) were associated with Ca2+ for their function. Results of the present study suggest that (1) at IM sites, active tissue remodeling is occurring for embryo invasion while the INTER sites are relatively quiescent and (2) Ca2+ may be a vital regulatory factor in the apposition process. Investigations of human homologues of those genes expressed in the mouse luminal epithelium during apposition may help to understand the implantation process and/or implantation failure in humans.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Embryo Implantation / genetics*
  • Embryonic Development / genetics
  • Epithelium / metabolism
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation*
  • Male
  • Mice
  • Oligonucleotide Array Sequence Analysis
  • Pregnancy
  • Uterus / cytology*
  • Uterus / metabolism*